The Maslov cycle and the J-homomorphism

Let L be an exact Lagrangian submanifold of a cotangent bundle T^* M. If a topological obstruction vanishes, a local system of R-modules on L determines a constructible sheaf of R-modules on M -- this is the Nadler-Zaslow construction. I will discuss a variant of this construction that avoids Floer theory, and that allows R to be a ring spectrum. The talk is based on joint work with Xin Jin.
This data repository is not currently reporting usage information. For information on how your repository can submit usage information, please see our documentation.